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Review Of Twenty Nonparametric Statistics And Their Large Sample Approximations

Nonparametric procedures are often more powerful than classical tests for real

world data which are rarely normally distributed. However, there are difficulties

in using these tests. Computational formulas are scattered throughout the
literature, and there is a lack of availability of tables. of critical values. We bring
together the computational formulas for twenty commonly employed

nonparametric tests that have large-sample approximations for the critical value.

Because there is no generally agreed upon lower limit for the sample size, we use

Monte Carlo methods to determine the smallest sample size that can be used with
the large-sample approximations. The statistics reviewed include single-

population tests, comparisons of two populations, comparisons of several

populations, and tests of association.



Review Of Twenty Nonparametric Statistics And Their Large Sample Approximations

Classical parametric tests, such as the F and t, were developed in the early part of the twentieth
century. These statistics require the assumption of population normality. Bradley (1968) wrote, "To the
layman unable to follow the derivation but ambitious enough to read the words, it sounded as if the
mathematician had esoteric mathematical reasons for believing in at least quasi-universal quasi-
normality" (p. 8). "Indeed, in some quarters the normal distribution seems to have been regarded as
embodying metaphysical and awe-inspiring properties suggestive of Divine Intervention" (p. 5).

However, when Micceri (1989) investigated 440 large-sample education and psychology data
sets, he concluded "No distributions among those investigated passed all tests of normality, and very
few seem to be even reasonably close approximations to the Gaussian" (p. 161). This is of great
practical importance because even though the well known Student's t test is preferable to nonparametric

competitors when the normality assumption has been met, Blair and Higgins (1980) noted:

Generally unrecogniied, or at least not made apparent to the reader, is the fact that the t

test's claim to power superiority rests on certain optimal power properties that are

obtained under normal theory. Thus, when the shape of the sampled population(s) is

unspecified, there are no mathematical or statistical imperatives to ensure the power

superiority of this statistic. (p. 311)

Blair and Higgins (1980) demonstrated the power superiority of the nonparametric Wilcoxon

Rank Sum test over the t test for a variety of nonnormal theoretical distributions. In a Monte Carlo study

of Micceri's real world data sets, Sawilowsky and Blair (1992) concluded that although the t test is
generally robust with respect to Type I errors under conditions of equal sample size, fairly large

samples, and two-tailed tests, it is not powerful for skewed distributions. Under these conditions, the

Wilcoxon Rank Sum test is three to four times more powerful. See also Bridge and Sawilowsky (1999)

and Nanna and Sawilowsky (1998).

It is appropriate to consider further this class of statistics because of the power advantages of

nonparametric tests with real world data. The terms `nonparametric' and 'distribution-free' are often

used interchangeably to describe tests that make few, if any, assumptions about the distribution of the

population. There is, however, a distinction between them. Bradley (1968) explained that "a
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nonparametric test is one which makes no hypothesis about the value of a parameter in a statistical
density function, whereas a distribution-free test is one which makes no assumptions about the precise
form of the sampled population" (p. 15). In this paper we are concerned with nonparametric procedures.

A difficulty in using nonparametric tests is the availability of computational formulas and tables
of critical values. For example, Siegel and Castellan (1988) noted, "Valuable as these sources are, they
have typically either been highly selective in the techniques presented or have not included the tables of
significance" (p. xvi). This continues to be a problem as evidenced by our survey of 20 in-print generic
college- statistics textbooks, including seven general textbooks, eight for the social and behavioral
sciences, four for business, and one for engineering. Formulas were given for only eight nonparametric
statistics, and tables of critical values were given for only the following six: (a) KoLmogorov-Smimov

test, (b) Sign test, (c) Wilcoxon Signed Rank test, (d) Wilcoxon (Mann-Whitney) test, (e) Spearman's
rank correlation coefficient, and (f) Kendall's rank correlation coefficient.

This situation is somewhat improved for nonparametric statistics textbooks. Eighteen

nonparametric textbooks published since 1956 were also reviewed. The most comprehensive texts in

terms of coverage were Neave and Worthington (1988) which is out of print and Deshpande Gore, and

Shanubhogue (1995). Table 1 contains the statistical content of the eighteen textbooks. The comment by

Laubscher, Steffens, and De Lange (1968) on the Mood test summarized the findings: "As far as we
know the main drawback in using this test statistic, developed more than 14 years ago, lies in the fact
that its distribution has never been tabulated except for a few isolated cases" (p. 497).

Table 1. Results of Survey of 18 Nonparametric Books.

Statistic

Number of Books
That Included Tables of

Critical Values

Single Population Tests

Kolgomorov-Smimov Goodness-of-Fit Test 11

Sign Test 4

Wilcoxon's Signed Rank Test 14

Comparison of Two Populations

Kolmogorov-Smimov Two Sample Test 11

Rosenbaum's Test 1
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Wilcoxon (Mann-Whitney) Test

Mood Test

Savage Test

Ansari-Bradley Test

14

Comparison of Several Populations

Kruskal-Wallis Test 10
Friedman's Test 9
Terpstra-Jonckheere Test 5

Page's Test 4
Match Test for Ordered Alternatives

1

Tests of Association

Spearman's Rank Correlation Coefficient

Kendall's Rank Correlation Coefficient
12

10

Many nonparametric tests have large sample approximations that can be used as an alternative to
tabulated critical values. These approximations are useful substitutes if the sample size is sufficiently

large, and hence, obviate the need for locating tables of critical values. However, there is no generally
agreed upon definition of what constitutes a large sample size. Consider the Sign test and the Wilcoxon
tests as examples.

Regarding the Sign test, Hajek (1969) wrote, "The normal approximation is good for N 12"
(p. 108). Gibbons (1971) agreed, "Therefore, for moderate and large values of N (say at least 12) it is
satisfactory to use the normal approximation to the binomial to determine the rejection region" (p. 102).

Both Sprent (1989) and Deshpande, Gore, and Shanubhogue (1995), however, recommended n greater

than 20. Siegel and Castellan (1988) suggested n 35, but Neave and Worthington (1988) proposed
that n > 50.

The literature regarding the Wilcoxon Rank Sum test is similarly disparate. Deshpande, Gore,

and Shanubhogue (1995) stated that the combined sample size should be at least 20 to use a large sample

approximation of the critical value. Conover (1971) and Sprent (1989) recommended that one or both

samples must exceed 20. Gibbons (1971) placed the lower limit at twelve per sample. For the Wilcoxon

Signed Rank test, Deshpande, Gore, and Shanubhogue (1995) said that the approximation can be used
when n is greater than 10. Gibbons (1971) recommended it when n is greater than 12, and Sprent (1989)

7
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required n to be greater than 20. The general lack of agreement may indicate that these
recommendations are based on personal experience, the sample sizes in available tables, the author's
definition of "acceptable" or "large", or some other criterion.

There are two alternatives to tables and approximations. The first is to use exact permutation
methods. There is software available that will generate exact p-values for small data sets and Monte
Carlo estimates for larger problems. See Ludbrook and Dudley (1998) for a brief review of the
capabilities of currently available software packages for permutation tests. However, these software
solutions are expensive, have different limitations in coverage of procedures, and may require
considerable computing time even with fast personal computers (see, e.g., Musial, 1999; Posch &

Sawilowsky, 1997). In any case, a desirable feature of nonparametric statistics is that they are easy to
compute without statistical software and computers, which makes their use in the classroom or work in
the field attractive.

A second alternative is the use of the rank transformation (RT) procedure developed by Conover
and Iman (1981). They proposed the use of this procedure as a bridge between parametric and
nonparametric techniques. The RT is carried out as follows: rank the original scores, perform the

classical test on the ranks, and refer to the standard table of critical values. In some cases, this procedure

results in a well-known test. For example, conducting the t test on the ranks of original scores in a two

independent samples layout is equivalent to the Wilcoxon Rank Sum test: (However, see the caution

noted by Sawilowsky & Brown, 1991). In other cases, such as factorial analysis of variance (ANOVA)

layouts, a new statistic emerges.

The early exuberance with this procedure was related to its simplicity and promise of increased

statistical power when data sets displayed nonnormality. Iman and Conover noted the success of the RT
in the two independent samples case and the one-way ANOVA layout. Nanna (1997) showed that the

RT is robust and powerful as an alternative to the independent samples multivariate Hotelling's T2.

However, Blair and Higgins (1985) demonstrated that the RT suffers power losses in the
dependent samples t test layout as the correlation between the pretest and posttest increases. Bradstreet

(1997) found the RT to perform poorly for the two sample Behrens-Fisher problem. Sawilowsky (1985),

Sawilowsky, Blair, and Higgins (1989), Blair, Sawilowsky, and Higgins (1987), and Kelley and

Sawilowsky (1997) showed the RT has severely inflated Type I errors and a lack of power in testing

interactions in factorial ANOVA layouts. Harwell and Serlin (1997) found the RT to have inflated Type

I errors in the test of (3 = 0 in linear regression. In the context of analysis of covariance, Headrick and
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Sawilowsky (1999, 2000) found the RT's Type I error rate inflates quicker than the general ANOVA
case, and it demonstrated more severely depressed power properties. Recent results by Headrick
(personal communications) shows the RT to have poor control of Type I errors in the ordinary least
squares multiple regression layout. Sawilowsky (1989) stated that the RT as a bridge has fallen down,
and cannot be used to unify parametric and nonparametric methodology or as a method to avoid finding
formulas and critical values for nonparametric tests.

The Current Study

As noted above, the computational formulas for many nonparametric tests are scattered
throughout the literature, and tables of critical values are scarcer. Large sample approximation formulas
are also scattered and appear in different forms. Most important, the advice on how "large" a sample
must be to use the approximations is conflicting. The purpose of this study is to ameliorate all five of
these problems.

Ascertaining the smallest sample size that can be used with a large sample approximation for the
various statistics would enable researchers who do not have access to the necessary tables of critical
values or statistical software to employ these tests. The first portion of this paper uses Monte Carlo
methods to determine the smallest sample size that can be used with the large sample approximation
while still preserving nominal alpha. The second portion of this paper provides a comprehensive review
of computational formulas with worked examples for twenty nonparametric statistics. They were chosen
because they are commonly employed and because large sample approximation formulas have been
developed for them.

Methodology

Each of the twenty statistics was tested with normal data and Micceri's (1989; see also
Sawilowsky, Blair, & Micceri, 1990) real world data sets. The real data sets represent smooth
symmetric, extreme asymmetric, and multi-modal lumpy distributions. Morite Carlo methods were used
in order to determine the smallest samples that can be used with large-sample approximations.

A program was written in Fortran 90 (Lahey, 1998) for each statistic. The program sampled with

replacement from each of the four data sets for n = 1, 2, ... N; ni = n2 = (2, 2), (3,3), (N1,N2), and so

forth as the number of groups increased. The statistic was calculated and evaluated using the tabled

values when available and the approximation of the critical value. The number of rejections was counted

BEST COPY AVAILABLE .9
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and the Type I error rate was computed. Nominal a was set at .05 and .01. Bradley's (1978)
conservative estimates of .045 < Type I error rate < .055 and .009 < Type I error rate < .011 were used,
respectively, as measures of robustness. The sample sizes were increased until the Type I error rates
converged within these acceptable regions.

Assumptions and Limitations

In many cases there are different formulas for the large sample approximation of a statistic. Two
criteria were used in choosing which formula to include: (a) consensus of authors, and (b) ease of use in

computing and programming. Some of the statistics have different large sample approximations based

on the presence of ties among the data. The formulas not based on ties were used because we corrected
for ties using average ranks.

Data Sets For Worked Examples In This Article

The worked examples in this study used five data sets that may be found in Table 3 (Appendix).

Some statistics converged at relatively large sample sizes. In choosing the sample size for the worked

example, we compromised between the amount of computation required for large samples and an

unrepresentatively small but convenient sample size. Therefore, we selected a sample size of n = 15,
recognizing that some statistics' large sample approximations do not converge within Bradley's (1968)

limits for this small sample size. The data sets were randomly selected from Micceri's (1989)
multimodal lumpy data set, Table 4 (Appendix). Because the samples came from the same population,

the worked examples all conclude that the null hypothesis cannot be rejected.

Statistics Examined

The twenty statistics included in this article represent four layouts: (1) single population tests, (2)

comparison of two populations, (3) comparison of several populations, and (4) tests of association.

Single-populations tests included: (a) a goodness-of-fit test, (b) tests for location, and (c) an estimator of

the median. Comparisons of two populations included: (a) tests for general differences, (b) two-sample

location problems, and (c) two-sample scale problems. Comparisons of several populations included: (a)

ordered alternative hypotheses, and (b) tests of homogeneity against omnibus alternatives. Tests of

association focused on rank correlation coefficients.

BEST COPY AVAILABLE
10 3 1.9 P P "



7

Results

Table 2 shows the minimum sample sizes for the tests studied. These recommendations are based

on results that converged when underlying assumptions are reasonably met. The minimum sample-sizes

are ,conservative, representing the largest minimum for each test. If the test had three or more samples,

the largest group minimum was chosen. Consequently the large-sample approximations will work in

some instances for smaller sample sizes. 'Where the test involves more than one sample, the smallest

sample size refers to the smallest sample size for each equal sample.

Table 2. Minimum Sample Size for Large-Sample Approximations.

Test a= .05 a= .01

Single Population Tests

Kolmogorov- Smirnov Goodness-of-Fit Test 25 n 5 40 28 5 n 50

Sign Test n > 150 n > 150

Wilcoxon Signed Rank Test 10 22

Estimator of Median for a Continuous Distribution n > 150 n > 150

Comparison of Two Populations

Kolmogorov-Smimov Two Sample Test n > 150 n > 150

Rosenbaum's Test 16 20

Tukey's Test 10 n 18 21

Wilcoxon (Mann-Whitney) Test 15 29

Hodges-Lehmann Estimator 15 20

Siegel-Tukey Test 25 38

Mood Test 5 23

Savage Test 11 31

Ansari-Bradley Test 16 29

Comparison of Several Populations

Kruskal-Wallis Test 11 22

Friedman's Test 13 23

Terpstra- Jonckheere Test 4 8

Page's Test (k > 4) 11 18

The Match Test for Ordered Alternatives (k > 3) 86 27

BEST COPY AVAILABLE 11
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Tests of Association

Spearman's Rank Correlation Coefficient 12 40
Kendall's Rank Correlation Coefficient 14 S n 24 15 5 n 5 35

Some notes and cautionary statements are in order with regard to the entries in Table 3. The
Monte Carlo methods were completed for n = 1, 2, ... 150. The Kolmogorov- Smirnov goodness-of-fit
test was conservative for values below the minimum value stated and liberal for values above the
maximum value. Results for the Sign test indicate convergence for some distributions may occur close
to n = 150. The results for the confidence interval for the Estimator of the Median suggest convergence
may occur close to n = 150 only for normally distributed data. However, for the nonnormal data sets the
Type I error rates were quite conservative (e.g., for a = .05 the Type I error rate was only 0.01146 and
for a = .01 it was only 0.00291 for n = 150 and the extreme asymmetric data set).

The Kolmogorov- Smirnov test was erratic, with no indication convergence would be close to
150. Results for Tukey's Test were conservative for a = .05 when the cutoff for the p-value was .05, and
fell within acceptable limitS for some sample sizes when .055 was used as a cutoff. The Hodges-
Lehmann Estimator only converged for normal data. For nonnormal data the large sample
approximation was extremely conservative with n = 10 (e.g., for the extreme asymmetric data set the
Type I error rate was only 0.0211 and 0.0028 for the .05 and .01 alpha levels, respectively) and
increased in conservativeness (i.e., the Type I error rate converged to 0.0) as n increased. The Match test

only converged for normally distributed data, and it was the only test where the sample size required for

a = .01 was smaller than for a = .05.

Statistics, Worked Examples, Large Scale Approximations

Single Population Tests

Goodness-of-fit statistics are single-population tests of how well observed data fit expected
probabilities or a theoretical probability density function. They are often used as a preliminary test of the

distribution assumption of parametric tests. The Kolmogorov-Smirnov goodness-of-fit test was studied.

Tests for location are used to make inferences about the location of a population. The measure of

location is usually the median. If the median is not known but there is reason to believe that its value is

Mo, then the null hypothesis is Ho : M =Mo . The tests for location studied were the Sign test,

Wilcoxon's Rank Sum test, and the Estimator of the Median for a Continuous Distribution.

BEST COPY AVAILABLE
12
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Kolmogorov-Smimov Goodness-of-Fit Test

The Kolmogorov-Smirnov (K-S) goodness-of-fit statistic was devised by Kolmogorov in 1933
and Smimov in 1939. It is a test of goodness-of-fit for continuous data, based on the maximum vertical

deviation between the empirical distribution function, F(x), and the hypothesized cumulative
distribution function, Fo(x). Small differences support the null hypothesis while large differences are
evidence against the null hypothesis.

The null hypothesis is Ho : F (x) = Fo(x) for all x and the alternative hypothesis is

H : F, (x) Fo(x) for at least some x where Fo(x) is a completely specified continuous distribution. The

empirical distribution function, F(x), is a step function, defined as:

number of sample values xF (x) = (1)
n

where n = sample size.

Test statistic.

The test statistic, D, is the maximum vertical distance between. the empirical distribution

function and the cumulative distribution function.

D = max[maxl Fn(x,) Fo(x,)1,max1F(xi_1) Fo(xi)1] (2)

Both vertical distances F (x;) Fo(x,.) and F,(x,_,) Fo(x;) have to be calculated in order to

find the maximum deviation. The overall maximum of the two calculated deviations is defined as Dn.

For a one-tailed test against the alternatives H, : F,(x) > Fo(x) or H, : F(x) < Fo(x) for at least

some values ofx, the test statistics are respectively:

D = max[F, (x) Fo(x)] (3)

or

= max[Fo(x) F(x)] (4)

The rejection rule is to reject Ho when D D,, where Dn, is the critical value for a given n and a levela

of significance.

Large sample sizes.

The null distribution of 4nD+2 (or 4nD,"' ) is approximately X2 with 2 degrees of freedom. Thus,

the large sample approximation is

C PY AVMLA



10

j7,2 I 11X:1.2D: 2/ 2 n (5)

where 4,22 is the value for chi-square with 2 degrees of freedom for the appropriate alpha level and n is

the sample size.

Example.

The K-S goodness-of-fit statistic was calculated for Sample 1 in Table 3 (Appendix), n = 15,
against the cumulative frequency distribution of the multimodal lumpy data set. The maximum
difference at step was 0.07463 and the maximum difference before step was 0.142610. Thus the value of

D, is 0.142610. For a two-tail test with a = .05, the large sample approximation is 1.3581/ =

1.3581/ /1-5 =0.35066. Because 0.142610 < 0.35066, the null hypothesis cannot be rejected.

The Sign Test

The Sign test is credited to Fisher as early as 1925. One of the first papers on the theory and

application of the sign test' is attributed to Dixon and Mood in 1946 (Hollander & Wolfe, 1973).
According to Neave and Worthington (1988), the logic of the Sign test is "almost certainly the oldest of
all formal statistical tests as there is published evidence of its use long ago by J. Arbuthnott (1710)!" (p.

65).

The Sign test is a test for a population median. It can also be used with matched data as a test for

equality of medians. The test is based upon the number of values above or below the hypothesized

median. Gibbons (1971) referred to the sign test as the nonparametric counterpart of the one-sample t

test. The sign test tests the null hypothesis Ho : M = Mc, where M is the sample median and Mo is the

hypothesized population median against the alternative hypothesis H,:M M. One-tailed test

alternative hypotheses are of the form H,:M < MO and H,:M > M,.

Procedure.

Each xi is compared with Mo. If xi> Mo then a plus sign '+' is recorded. If x; < Mo then a minus

sign is recorded. In this way all data are reduced to '+' and signs.

Test statistic.

The test statistic is the number of '+' signs or the number of signs. If the expectation under

the alternative hypothesis is that there will be a preponderance of '+' signs, the test statistic is the

Mr COPY' AVAltABLE
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number of `' signs. Similarly, if the expectation is a preponderance of `' signs, the test statistic is the
number of `+' signs. If the test is two-tailed, use the smaller of the two. Thus,

S= the number of `+' or `' signs (depending upon the context) (6)

Large sample sizes.

The large sample approximation is given by

S' = 112 (7)n

4

where S is the test statistic and n is the sample size. S* is compared to the standard normal z scores for
the appropriate a level.

Example.

The Sign test was calculated using Sample 1 in Table 3 (Appendix), n = 15. The population
median is 18.0. The number of negative values is 7 and the number of positive values is 8. Therefore S=
7. The large sample approximation, S., using formula (7) is -.258199. Because -.258199 > -1.95996, the
null hypothesis cannot be rejected.

Wilcoxon's Signed Rank Test

Wilcoxon's Signed Rank test was introduced by Wilcoxon in 1945. The statistic uses the ranks
of the absolute differences between xi and Mo along with the sign of the difference. This uses the relative
magnitudes of the data. This statistic can also be used to test for symmetry and to test for equality of

location for paired replicates.

The null hypothesis is Ho : Al = Mo against the alternative H1: M Mo. The alternative may

also be one-sided, HI : M > Moor H1: Al < Mo.

Procedure.

Compute the differences, D,, by the formula

D, = .r, IV° (S)

Rank the absolute value of the differences, in ascending order, keeping track of the individual signs.

BEST COPY AVAILABLE
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Test statistic.

The test statistic is the sum of either the positive ranks or the negative ranks. If the alternative
hypothesis suggests that the sum of the positive ranks should be large,

then

T- = the sum of ranks of the negative differences

If the alternative hypothesis suggests that the sum of the negative ranks should be large, then

= the sum of ranks of the positive differences

(9)

(10)

,
For a two-tailed test, T is the smaller of the two rank-sums. The total sum of the ranks is n(n +1)

which
2

gives the following relationship:

Lary sample sizes.

The large sample approximation is

Z

n(n +1)

4
lin(n +1)(2n +1)

24

where T is the test statistic and n is the sample size. The resulting z is compared to the standard normal z

for the appropriate alpha level.

Example.

The Signed Rank test was computed using the data from Sample 1 in Table 3 (Appendix), n =

15. The median of the population is 18.0. Tied differences were assigned midranks. The sum of the
negative ranks was 38.5 and the sum of the positive ranks was 81.5. Therefore the Signed Rank statistic

(12)

is 38.5. The large sample approximation is

1.95996, the null hypothesis is not rejected.

21.5 21.5
= = 1.22112. Because 1.22112 >

310 17.6068

Estimator of the Median for a Continuous Distribution

The sample median is the point estimate of the population median. This procedure provides a I

a confidence interval for the population median. It was designed to be used with continuous data.

BEST COPY AVAILABLE
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Procedure.

Let n be the size of the sample. Order the n observations in ascending Order,

x(1) 5_ x(2) . Let x(0) -,co and x(1) = co . These n + 2 values form n + 1 intervals

The ith interval is defined as (x(1_,),..r0)) with i = 1, 2,(x( x(1)), (x(,) , x(2) ), (x-1), X (n)), (X(n), X(n+o)

. . n, n + 1. The probability that the median is in any one interval is based on the binomial distribution.

The confidence interval for the median given the confidence coefficient 1 - a, requires that an r be found
such that the sum of the probabilities of the intervals in both the lower and upper ends give the best
conservative approximation of a/2, according to the following:

E(n) 1 a (n) 1
J.0

2"
2 j 2" (13)

Thus (xo, x(r+o) is the last interval in the lower end making xfr+i) the lower limit of the confidence

interval. By a similar process, z(".,.) is the upper limit of the confidence interval.

Large sample sizes.

According to Deshpande, Gore, and Shanubhogue (1995) "one may use the critical points of the

standard normal distribution, to choose the value of r + 1 and n r, in the following way": r + 1 is the
integer closest to

n

za12(
(14)

where zcd2 is the upper a/2 critical value of the standard normal distribution.

Example.

The data from Sample 1 in Table 3 (Appendix), n = 15, were used to compute the estimator of

the median. The population median is 18.0. For the given n and a = .05, the value of r is 3. The value of

r + 1 is 4, and n r is 12. The 4th value is 13 and the 12th value is 33. Therefore the interval is (13, 33).

The large sample approximation yields 7.5 1.95996(1.9365) = 7.5 3.70 = 3.80. The closest integer is

r + 1 = 4, so r = 3 and. n r = 12, resulting in the same interval, (13, 33). The interval contains the

population median, 18.

BEST COPY AVAILABLE
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Two Sample Problems

The two-sample problem consists of two independent random samples drawn from two
populations. This study examined two sample tests for general differences, two sample location
problems, and two sample scale problems.

When differences between two samples are not expected to be predominantly differences in
location or differences in scale, a test for general differences is appropriate. Generally differences in
variability are related to differences in location. Two tests for differences were considered, the
Kolmogbrov-Smirnov test for general differences and Rosenbaum's test.

Two sample location problems involve tests for a difference in location between two samples

when the populations are assumed to be similar in shape. The idea is that 1(x) = f2 (x + 0) or

f,, (x) = f, (x 8) where 8 is the distance between the population medians. Tukey's quick test, the

Wilcoxon (Mann-Whitney) statistic, and the Hodges-Lehmann estimator of the difference in location for
two populations were considered.

In two sample scale problems, the population distributions are usually assumed to have the same

location with different spreads. However, Neave and Worthington (1988) cautioned that tests for
difference in scale could be severely impaired if there is a difference in location as well. The following

nonparametric tests for scale were studied: the Siegel-Tukey test, the Mood test, the Savage test for
positive random variables, and the Ansari-Bradley test.

Kolmogorov-Smirnov Test for General Differences

The Kolmogorov-Smirnov test compares the cumulative distribution frequencies of the two
samples to test for general differences between the populations of the samples. The sample cdf "is an

approximation of the true cdf of the corresponding population though, admittedly, a rather crude one if
the sample size is small" (Neave & Worthington, 1988, p. 149). This property was used in the goodness-

of-fit test above. Large differences in the sample cdrs can indicate a difference in the population cdfs,

which could be due to differences in location, spread, or more general differences in the distributions.

The null hypothesis is Ho : F, (x) = F2(x) for all x and the alternative hypothesis is H, : F, (x) F2 (x) for

some x.
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Procedure.

The combined observations are ordered from smallest to largest, keeping track of the sample
membership. Above each score, write the cdf of sample 1, and below each score write the cdf of sample
2. Because the samples are of equal sizes, it is only necessary to use the numerator of the cdf. For

example, the cdf(x,) = 1 . Then write i above x, for sample 1. Find the largest difference between the cdf

for sample 1 and the cdf for sample 2.

Test statistic.

The test statistic is D*. D* = mnD, and D* = n2D for equal sample size. The above procedure
yields nD. Thus

D* = n(nD) (15)
The greatest difference found by the procedure is multiplied by the sample size.

Large sample sizes.

As sample size increases, the distribution is approximately chi-squared with 2 degrees of
freedom, as it is for the goodness-of-fit test. The large sample approximation for D is

D
11%2 2(M n)

2 mn
(16)

where 42 is the value for chi-square with 2 degrees of freedom for the appropriate alpha level and n, m

are the two sample sizes. The resulting D is used in formula (15).

Example.

This example used the data from Sample 1 and Sample 5 in Table 3 (Appendix), n = m = 15. The

greatest difference (nD) between the cdfs of the two samples is nD = 3. Therefore D. = 15(3) = 45. The

30
large sample approximation is 152(1.3581) l = 225( l .3581)(.365148) = 111.579301. Because 45 <

2,5

111.579301, the null hypothesis cannot be rejected.

Rosenbaum's Test

Rosenbaum's test, which was developed in 1965, is useful in situations where an increase in the

measure of location implies an increase in variation. It is a quick and easy test based on the number of

observations in one sample greater than the largest observation in the other sample.

The null hypothesis is that both populations have the same location and spread against the
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alternative, that both populations differ in location and spread.

Procedure.

The largest observation in each sample is identified. If the largest overall observation is from
sample 1, then the number of observations from sample 1 which are greater than the largest observation
from sample 2 are counted. If the largest overall observation is from sample 2, then the number of
observations from sample 2 which are greater than the largest observation from sample 1 are counted.

Test statistic.

The test statistic is the count of the extreme observations. R is the number of observations from
sample 1 greater than the largest observation in sample 2 or the number of observations from sample 2
greater than the largest observation in sample 1.

Large sample sizes.

As sample sizes increase, --> p and the probability that the number of extreme values equals h

approaches?.

Example.

Rosenbaum's statistic was calculated using Samples 1 and 5 in Table 3 (Appendix), ni = n2 = 15.
The maximum value from Sample 1 is 39, and from Sample 2, 33. There are three values from Sample 1
greater than 33, namely 34, 36, and 39. Hence R = 3. The large sample approximation is (.5)3 = 0.125.
Because 0.125 > .05, the null hypothesis cannot be rejected.

Tukey's Quick Test

Tukey published a quick and easy test for the two sample location problem in 1959. It is easy to
calculate and in most cases does not require the use of tables. The most common one-tailed critical
values are 6 (a = .05) and 9 (a = .01) for most sample sizes. The statistic is based on the sum of the
extreme runs. If there is a difference in location between samples X and Y, one would expect more X's
at one end and Y's at the other end when the combined samples are ordered.

Procedure.

The combined samples can be ordered, but it is only necessary to order the largest and smallest
elements. If both the maximum and minimum value come from the same sample the test is finished, the
value of Ty = 0, and the null hypothesis is not rejected.

For the one-tailed test, the lower end run should come from the sample expected to have the

20
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lower median and the upper run from the sample expected to have the larger median. For a two-tailed
test, it is possible to proceed with the test as long as the maximum and minimum come from different
samples.

Test statistic.

Ty is defined as follows for H1=My>Mx.Ty is the number of X's less than the smallest value

of Y plus the number of Y's greater than the largest value of X. If HI= Mx > My then the samples are

reversed. For the two-tailed hypothesis both possibilities are considered.

Critical values.

As stated above, generally, the critical value for a = .05 is 6, and is 9 for a = .01. There are

tables available. As long as the ratio of nx to ny is within 1 to 1.5, these critical values work well. There

are corrections available when the ratio exceeds 1.5. For a two-tailed test the critical values are 7 (a =
.05) and 10 (a = .01).

Large sample sizes.

The null distribution is based on the order of the elements ofboth samples at the extreme ends. It

does not depend upon the order of the elements in the middle. The formula for the probability that Ty h

is the sum of a finite geometric series,

pq(qh ph
Prob(Ty h) =

qp (17)

When the sample sizes are equal, p = q = .5. Then the probability of Ty h is h -2-(h.1) . For a two-tailed

test the probability is doubled.

Example.

The Tukey test was calculated using the data in Sample 1 and Sample 5 in Table 3 (Appendix), ti

= m = 15. The maximum value, 39, is from Sample I and the minimum, 2, is from Sample 5 so the test

may proceed. The value of Ty = 1 + 3 = 4. For a two-tailed test with a = .05, the large sample

approximation is 2(4)(2'5) = 0.25. Because 0.25 > .05, the null hypothesis cannot be rejected.

Wilcoxon (Mann-Whitney) Statistic

In 1945, Wilcoxon introduced the Rank Sum test at the same time as the Signed Rank test. Mann

and Whitney introduced a different version of the test in 1947. The Wilcoxon statistic is easily converted

to the Mann-Whitney U statistic. The hypotheses of the test are Ho : F, (x) = F, (x) for all x against the
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two-tailed alternative, H : F, (x) # F, (x) . The one-tailed alternative is H, : F (x) = F, (x + 0) .

Procedure.

For the Wilcoxon test, the combined samples are ordered, keeping track of sample membership.
The ranks of the sample that is expected, under the alternative hypothesis, to have the smallest sum, are
added. The Mann-Whitney test is as follows. Put all the observations in order, noting sample
membership. Count how many of the observations of one sample exceed each observation in the first
sample. The sum of these counts is the test statistic, U.

Test statistic.

For the Wilcoxon test,

= ER; (18)
1'1

Where Rj are the ranks of sample n and S,, is the sum of the ranks of the sample expected to have

the smaller sum

For the Mann-Whitney test, calculate the U statistic for the sample that is expected to have the
smaller sum under the alternative hypothesis.

= the sum of the observations in n exceeding each observation in m (19)

U = the sum of the observations in m exceeding each observation in n (20)

There is a linear relation between S and U. It is expressed as

U, = S m(m +1) (21)

and similarly,

1

U = S
2
-n(n +1)

where

(22)

Um= mn-U, (23)

In a two-tailed test, use the smallest U statistic to test for significance.

Large sample sizes.

The large-sample approximation using the Wilcoxon statistic, S is:
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z
Ilmn(rn + n +1)

12

The large-sample approximation with the U statistic is

S
n(n + m +1)

2

z

1
U +

1

mn
2 2

limn(m + n +1)

12

19

(24)

(25)

In either case, reject Ho if z < -za (or z < - zai2 for a two-tailed test).

Example.

The Wilcoxon (Mann-Whitney) Rank Sum statistic was calculated with data from Sample 1 and
Sample 5 in Table 3 (Appendix), n = m = 15. The combined samples were ranked, using midranks forties. The rank sum for Sample 1 was 258.5 and for Sample 5, 206.5. Hence S = 206.5. Calculating the Ustatistic, U = 206.5-0.5(15)(16) = 86.5. The large sample approximation for the U statistic is
86.5 +.5 .5(152)

= 25.5 '
1.05769. Because 1.05769 > 1.95996, the null hypothesis cannot beI152(31) 24.1091

12

rejected.

Hodges-Lehmann Estimator of the Difference in Location

When a difference in location exists, it may be appropriate to develop an estimate of the
difference. Suppose there are two populations that are assumed to have similar shaped distributions, but
have different locations. The problem is to develop a confidence interval that will have the probability of
1 a that the actual difference lies in the interval.

Procedure.

All the pairwise differences are computed, x, yi . For sample sizes of m and n, there are ma
differences. The differences are put in ascending order. The task is to find two integers / and u such that
the probability that the difference lies between / and u is equal to 1 a. These limits are chosen
symmetrically. The appropriate lower tail critical value is found for the Mann-Whitney U statistic. This
value is the upper limit of the lower end of the differences. Therefore I is the next consecutive integer.
The upper limit of the confidence interval is the ith difference from the upper end. Using the relationship

BEST COPY AVAILABLE 23



20

1 + u = mn + 1, u = mn 1 + 1. The interval (/, u) is the confidence interval for the difference in location
for the two populations.

Large sample sizes.

"1 and u may be approximated by

1=
mn en(m+ n +1) 1]

2 12 2

mn
[

limn(m+ n +1) 1

2 + Za /2u =
12 2

(26)

(27)

where the square brackets denote integer nearest to the quantity within, and z &2 is the suitable upper

critical point of the standard normal distribution" (Deshpande, Gore, & Shanubhogue, 1995, p. 45).

Example.

The Hodges-Lehmann estimate of the difference in location was computed using Samples 1 and

5 in Table 3 (Appendix), n = m = 15. All possible differences were computed and ranked. Using the

large sample approximation formula (26), / = 112.5 1.95596 (24.109) .5 = 64.844. Thus / = 65 and
the lower bound is the 65th difference, - 4. The upper bound is the 65th difference from the upper end, or

the 225 65 + 1 = 161st value, 14. The confidence interval is (-4, 14).

Siegel-Tukey Test

In 1960, the Siegel-Tukey test was developed, which is similar in procedure to the Wilcoxon

Rank Sum test for difference in location. This test is based upon the logic that if two samples come from

populations with the same median, the one with the greater variability will have more extreme scores.

An advantage of the Siegel Tukey statistic is that it uses the Wilcoxon table of critical values or can be

transformed into a U statistic for use with the Mann-Whitney U table of critical values.

The hypotheses for a two-tailed test are:

Ho :There is no difference in spread between the two populations

HI :There is some difference in spread between the two populations

Procedure.

The two combined samples are ordered, keeping track of sample membership. The ranking

proceeds as follows: the lowest observation is ranked 1, the highest is ranked 2, and the next highest 3.

Then the second lowest is ranked 4 and the subsequent observation ranked 5. The ranking continues to
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alternate from lowest to highest, ranking two scores at each end. If there is an odd number of scores, the
middle score is discarded and the sample size reduced accordingly. Below is an illustration of the
ranking procedure.

1 4 5 8 9 . N . .. 7 6 3 2
where N = n + m.

Test statistic

The sum of ranks is calculated for one sample. The rank sum can be used with a table of critical

values or it can be transformed into a U statistic by the following formula.

U. = R 2 n(n +1) (28)

Or

1U = R,
2
m(m +1) (29)

Large sample sizes.

The large-sample approximations are the same for the Siegel-Tukey test as for the Wilcoxon

Rank Sum or the Mann-Whitney U statistic, formulas (24) and (25).

Example.

The Siegel-Tukey statistic was calculated using Sample 1 and Sample 5 in Table 3 (Appendix), n

= m = 15. The samples were combined and ranked according to the method described. Then tied ranks

were averaged. The sum of ranks was 220.5 for Sample 1, and 244.5 for Sample 5. The U statistic is

220.5 .5(15)(16) = 100.5. The large sample approximation is z =
100.5 + .5 .5(152)

=
11152(31)

12

0.476998. Because 0.476998 > 1.95996, the null hypothesis cannot be rejected.

11.5
24.109127

The Mood Test

In 1954, the Mood test was developed based on the sum of squared deviations of one sample's

ranks from the average combined ranks. The null hypothesis is that there is no difference in spread

against the alternative hypothesis that there is some difference.

Procedure.

Let sample 1 be x,,x,,...,x, and let sample 2 be .v,..v .... ,y, . Arrange the combined samples in
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ascending order and rank the observations from 1 to m + n. Let Ri be the rank of x1. Let N = m + n. If N
is odd, the middle rank is ignored to preserve symmetry.

Test statistic.

The test statistics is

(
2.1

Large sample sizes.

The large sample approximation is

m(N2 1)
M

112

mn(N +1)(N2 4)

180

(30)

(31)

where N= m + n and M is the test statistic.

Example.

The Mood statistic was calculated using Sample 1 and Sample 5 in Table 3 (Appendix), n = m =

15. The combined samples are ranked, with midranks assigned to ties. The overall mean of the ranks is

15.5, and the sum of squared deviations of the ranks from the mean for Sample 1 was calculated,

75yielding M = 1257. The large sample approximation is 1257 1123. 133.25
0.71512. Because

34-720 186.333

0.71512 < 1.95596, the null hypothesis cannot be rejected.

The Savage Test for Positive Random Variables

Unlike the Siegel-Tukey test and the Mood test, the Savage test does not assume that location

remains the same. It is assumed that differences in scale cause a difference in location. The samples are

assumed to be drawn from continuous distributions.

The null hypothesis is that there is no difference in spread against the two-tailed alternative, there

is a difference.

Procedure.

Let sample 1 be and let sample 2 bey,,y2,...,y . The combined samples are

ordered, keeping track of sample membership. Let R, be the rank for x,. The test statistic is computed for

either sample.
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Test statistic.

The test statistic is

where

S =Ea(R,)

N

a(i). E 7
j=N+1-i J

23

(32)

(33)

1 1 1 1 1such that a(1) = a(2) = , a(N) =1+ 1 + 1 + ...+ +
N N 1 N 2 3 N 1 N

Large sample sizes.

For large sample sizes the following normal approximation may be used.

S n
S. (35)

(, 1 " 11)EN 1 N ,=, j

S* is compared to the critical z value from the standard normal distribution.

Example.

The Savage statistic was calculated using Sample 1 and Sample 5 in Table 3 (Appendix), n= m =

15. Using Sample 1, S = 18.3114. The large sample approximation is
J7.7586(.86683)

15 3.114

V7.7586(.86683) 2.59334

1.27689. Because 1.27689 < 1.95596, the null hypothesis cannot be rejected.

Ansari-Bradley Test

This is a rank test for spread when the population medians are the same. The null hypothesis is

that the two populations have the same spread against the two-tailed alternative that the spreads of the

two populations differ.

Procedure.

Order the combined samples, keeping track of sample membership. Rank the smallest and largest

observation 1. Rank the second lowest and second highest 2. If the combined sample size, N, is odd. the

middle score will be ranked
2

N+1
and if N is even the middle two ranks will be N . The pattern will be

2

BEST COPY AVAILABLE 27



either 1, 2, 3, . . . ,
N +1

, . . . , 3, 2, 1 (N odd), or 1, 2, 3, . .

2

N

2
N2 . . . , 3, 2, 1 (N even).

Test statistic.

The test statistic, W, is the sum of the ranks of sample 1.

W = ER,

where R, is the rank of the ith observation of a sample.

Large sample sizes.

There are two formulae, one if N is even, and one if N is odd.

m(m + n + 2)

4W.

if N is even and

mn(m + n + 2)(m + n 2)

48(m + n 1)

24

(35)

(36)

W
m(m + n +1)2

W. 4(m + n)

li (37)
mn(m + n + 1)[3 + (m + n)2]

48(m + n)2

if N is odd. Reject the null hypothesis if W. zan.

Example.

The Ansari-Bradley statistic was calculated using Sample 1 and Sample 5 in Table 3 (Appendix),
n = m = 15. The combined samples were ranked using the method described, and tied ranks were
assigned average ranks. The statistic, W, is 126.5, the rank sum of Sample 5. The large sample

approximation is ,
126.5 120

=
6.5

0.540117. Because 0.540117 < 1.95596, the nullV144.827586 12.03443

hypothesis cannot be rejected.

Comparisons of Several Populations

This section considered tests against an omnibus alternative and tests involving an ordered
hypothesis. The omnibus tests were the Kruskal-Wallis test and Friedman's test. The tests for ordered
alternatives are the Terpstra-Jonckheere test, Page's test, and the match test.

The Kruskal-Wallis test is a test for independent samples. It is analogous to the one-way analysis
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of variance. Friedman's test is an omnibus test for k related samples, and is analogous to a two-way
analysis of variance.

Comparisons of several populations with ordered alternative hypotheses are extensions of a one-
sided test. Where an omnibus alternative states only that there is some difference between the
populations, an ordered alternative specifies the order of differences. Three tests for an ordered
alternative were included, the Terpstra-Jonckheere Test, Page's Test, and the Match Test.

Kruskal:-Wallis Test

In 1952, the Kruskal-Wallis test was derived from the F test. It is an extension of the Wilcoxon
(Mann-Whitney) test. The null hypothesis is that the k populations have the same average (median). The
alternative hypothesis is that at least one sample is from a distribution with a different average (median).

Procedure.

Rank all the observations in the combined samples, keeping track of the sample membership.
Compute the rank sums of each sample. Let R, equal the sum of the ranks of the ith sample of sample
size n,. The logic of the test is that the ranks should be randomly distributed among the k samples.

Test statistic.

The formula is

12 v--,k
Rz

H L 1--3(N +1)
N(N +1) i=, ni (38)

where N is the total sample size, ni is the size of the ith group, k is the number of groups, and R, is the
rank-sum of the ith group. Reject Ho when H critical value.

Large sample sizes.

For large sample sizes, the null distribution is approximated by the ,y2 distribution with k 1

degrees of freedom. Thus, the rejection rule is to reject Ho if H Y a2 k-1 where Y
a2 k-1 is the value of

X2 at nominal a with k 1 degrees of freedom.

Example.

The Kruskal-Wallis statistic was calculated using Samples 1 5 in Table 3 (Appendix), n1 = n2 =

n3 = n4= n5 = 15. The combined samples were ranked, and tied ranks were assigned midranks. The rank

sums were: R1 = 638, R2 = 595, R3 = 441.5, R4 = 656.5. and Rs = 519. The sum of Rig = 1,656,344.5,

'29
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12

75 76 15

(1,656,344.5)1, 2, 3, 4, 5. H = 3 76 = 0.00211(110,422.9667) 228 =4.4694. The statistic, H =
.

4.4694. The large sample approximation is chi-square with 5 1 = 4 degrees of freedom at a = .05
which is 9.488. Because 4.4694 < 9.488, the null hypothesis cannot be rejected.

Friedman's Test

In 1937, the Friedman test was developed as a test for k related samples. The null hypothesis is

that the samples come from the same population against the alternative that at least one of the samples

comes from a different population. The data are arranged in k columns and n rows, where each row
contains k related observations.

Procedure.

Rank the observations for each row from 1 to k. For each of the k columns, the ranks are added

1and averaged, and the mean is designated . The overall mean of the ranks is R =
2
(k +1). The sum

of the squares of the deviations of mean of the ranks of the columns from the overall mean rank is

computed. The test statistic is a multiple of this sum.

Test statistic.

The test statistic for Friedman's test is M, which is a multiple of S, as follows:

k

S R)2
J=1

M =
12n

k(k +1)

(39)

(40)

where n is the number of rows, and k is the number of columns. An alternate formula that does not use S

is as follows.

12 ,
M = ER- 3n(k +1) (41)

nk(k + 1) ,=,

where n is the number of rows, k is the number of columns, and R, is the rank sum for the ith column,

1, 2, 3, . . . , k.

Large sample sizes.

For large sample sizes, the critical values can be approximated by the chi-square distribution

with k 1 degrees of freedom.

BEST COPY AVAILABLE 30



27

Example.

Friedman's statistic was calculated with Samples 1 5 in Table 3 (Appendix), n1 = n2 = n3 = n4 =
n5 = 15. The rows were ranked, with midranks assigned to tied ranks. The column sums are: Ri = 48.5,
R2 = 47, R3 = 33, R4 = 52.5, and R5 = 44. The sum of the squared rank sums is 10,342.5. The statistic,

M =
12

(10,342.5) 3.15.6 = 0.02667(10,342.5)-270 = 5.8. The large sample approximation is15.5.6

chi-square with 5 1 = 4 degrees of freedom and a = .05 which is 9.488. Because 5.8 < 9.488, the null

hypothesis cannot be rejected.

Terpstra-Jonckheere Test

This is a test for more than two independent samples. It was first developed by Terpstra in 1952

and later independently developed by Jonckheere in 1954. The null hypothesis is that the medians of the
samples are equal against the alternative that the medians are either decreasing or increasing. This test is

based on the Mann-Whitney U statistic, where U is calculated for each pair of samples and the U
statistics are added.

Suppose the null hypothesis is Ho : m, = m2 = mk and the alternative hypothesis is

H1 : m1 < m2 <... <mk for i = 1, 2, . . . k, where mi is the median for sample i. The U statistic is

k(k 1)
calculated for each of the

2
pairs, which are ordered so that the smallest U is calculated.

Test statistic.

The test statistic is the sum of the U statistics.

W = Uk, Uk2 + U31 +U33 + U21

where (4 is the number of (x, ,xj) pairs with xj less than x,

Large sample sizes.

The null distribution of W approaches normality as the sample size

distribution is

and the standard deviation is

Q=

(N2 )
=

4

Ii/s/2(2/V 4- 3) n:(2n, +3)
71

3i

iM

(42)

increases. The mean of the

(43)

(44)
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The critical value for large samples is given by

W ,u za 1

2

1
iwhere z is the standard normal value, and

2
is a continuity correction.

(45)

Example.

The Terpstra-Jonckheere statistic was calculated with Samples 1 5 in Table 3 (Appendix), n1 =

n2= n3 = na = n5 = 15. This was done as a one-tailed test with a = .05. The U statistics for each sample

were calculated. U2,1 = 121, U3,1 = 145, U4,1 = 103, U5,1 = 135, U3,2 = 142, U4,2 = 97, U5,2 = 124, U4,3 =
71, U5,3 = 91, and U5,4 = 136, for a total W= 1165. The large sample approximation was calculated, with

= 1125 and a = 106.94625. The approximation is 1125 1.6449(106.9463) - .5 = 948.584. Because

1165 > 948.584 the null hypothesis cannot be rejected.

Page's Test

In 1963, Page's test for an ordered hypothesis for k > 2 related samples was developed. It takes

the form of a randomized block design, with k columns and n rows. The null hypothesis is

Ho : tn, = m2 = = mk and the alternative hypothesis is H 1 : m 1 < m2 < < Mk f o r i = 1, 2, . . . k. For

this test, the alternative must be of this form. The samples need to be reordered if necessary.

Procedure.

The data are ranked from 1 to k for each row, creating a table of the ranks. The ranks of each of

the k columns are totaled. If the null hypothesis is true, the ranks should be evenly distributed over the

columns, whereas if the alternative is true, the ranks sums should increase with the column index.

Test statistic.

Each column rank-sum is multiplied by the column index. The test statistic is

L =IiRi

where i is the column index, i = 1, 2, 3, .. . , k, and R, is the rank sum for the ith column.

Large sample sizes

The mean of L is
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4

32

1-161

( 47)



and the standard deviation is

Q=

29

nk2(k +1)(k2 1)
144

For a given a, the approximate critical region is

L ?_ + + 1
2

(48)

(49)

Example.

Page's statistic was calculated with Samples 1 5 in Table 3 (Appendix), n1 n2 n3 n4 n5

15. This was done as a one-tailed test with a = .05. The rows are ranked with midranks assigned to tied

ranks. The column sums are : RI = 48.5, R2 = 47, R3 = 33, R4 = 52.5, and R5 = 44. The statistic, L, is the

sum of iR,2 = 671.5, where i = 1, 2, 3, 4, 5. The large sample approximation was calculated with 675

and a = 19.3649. The approximation is 675 + 1.64485(19.3649) + .5 = 707.352. Because 671.5 <

707.352, the null hypothesis cannot be rejected.

The Match Test for Ordered Alternatives

The match test is a test for k > 2 related samples with an ordered alternative hypothesis. The

match test was developed by Neave and Worthington (1988). It is very similar in concept to Page's test,

but instead of using rank-sums, it uses the number of matches of the ranks with the expected ranks plus

half the near matches.

The hypotheses are the same as for Page's test. The null hypothesis is H0 : m, = m2 = = m, and

the alternative hypothesis is H, : m, < m2 < < m, for i = 1, 2, . . . k.

Procedure.

A table of ranks is compiled with the observations in each row ranked from 1 to k. Ties are

assigned average ranks. Each rank, is compared with the expected rank, i, which is the column index.

If the rank equals the column index, it is a match. The number of matches is counted. Every non-match

such that 0.5 5 Ir, - i I 5 1.5 is counted as a near match.

Test statistic.

The test statistic is

L, = L, +-
1

(number of near matches)

where LI is the number of matches.
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Large sample sizes.

The null distribution approaches a normal distribution for large sample size. The mean andstandard deviation for L2 are as follows:

cr =

,u = n(2
1

k)

n ( 3(k 2)) 1

2 ) k(k 1)
For a given level of significance a the critical value approximation is

L2 .,u+zcr+-1
2

(51)

(52)

(53)

1
i

where z is the upper-tail critical value from the standard normal distribution and
2

is a continuity
correction.

Example.

The Match statistic was calculated with Samples 1 5 in Table 3 (Appendix), n1 = n2 = n3 = n4 =ns = 15. This was done as a one-tailed test with a = .05. The rows are ranked with midranks assigned totied ranks. The number of matches for the five columns are 3, 3, 2, 2, and 1, for L1 = 11. The number of
near matches were 1, 6, 8, 8, and 4, for L2 = 27. The statistic, L = 11 + .5(27) = 24.5. For the large
sample approximation, p. = 27 and a = 3.68103. The approximation is 27 + 1.6449(3.68103) + .5 =
33.5549. Because 24.5 < 33.5549, the null hypothesis cannot be rejected.

Rank Correlation Tests
The rank correlation is a measure of the association of a pair of variables. Two tests of

association were studied, Spearman's rank correlation coefficient (rho) and Kendall's rank correlation
coefficient (tau).

Spearman's Rank Correlation Coefficient

Spearman's rank correlation (rho) was published in 1904. Let X and Y be the two variables of
interests. Each observed pair is denoted by (x1, y,). The paired ranks are denoted by (ri, s) where r, is the
rank of xi and si is the rank of yi . The null hypothesis for a two-tailed test is Ho : p = 0 against the
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alternative, H1: p # 0 . The alternative hypotheses for a one-tailed test are H,: p > 0 or H,: p < 0.
Procedure.

Rank both X and Y scores while keeping track of the original pairs. Form the rank pairs (r s,)
which correspond to the original pair, (x y,). Calculate the sum of the squared differences between r,

and si.

Test statistic.

If there are no ties, the formula is

where

6T
p =1

n(n2 -1) (54)

T = E(ri (55)

Large sample sizes.

For large n the distribution of p is approximately normal. The critical values can be found by

z = pr-NIT:T. The rejection rule for a two-tailed test is to reject H0 ifz > zaJ2 or z < - zaa where zJ2 is the

critical value for the given level of significance.

Example.

Spearman's rho was calculated using Sample 1 and Sample 5 in Table 3 (Appendix),n = 15. The

sum of the squared rank differences for the two samples is T = 839. Rho is 1

6(839) 5034-
15(224) 3360

1.498214 = -0.498214. The large sample approximation is z = -0.498214 ."1-.11 = -1.864147. Because

1.864 > -1.956, the null hypothesis cannot be rejected.

Kendall's Rank Correlation Coefficient

Kendall's rank correlation coefficient (tau) is similar to Spearman's rho. The underlying concept

is the tendency for concordance. Concordance is the concept that if xi > x1 then yi > y . Concordance

implies that the differences xi - xi and yi - yi have the same sign, either "+" or "-". Discordant pairs are

pairs that have opposite signs, that is, x > but .1., < y, , or the opposite, xi < xj but yi > y, ..A high

number of concordant pairs support the alternative hypothesis of positive, and correlation, a high

number of discordant pairs support an alternative hypothesis of negative correlation.
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Procedure.

Arrange the pairs in ascending order of X. Count the number of y, which are smaller than y,. This
is the number of discordant pairs (ND) for xi. Repeat the process for each subsequent x, , counting the
number of smaller yj to the right of the y, ,j = i + 1, i + 2, i + 3, . . . , n.

Test statistic.

1

2
Because the total number of pairs is -n(n -1) , it follows that NN = -1 n(n -1) No . The statistic

2

(r ) is defined as

r=
1

n(n -1)
2

- ND

This formula can be simplified by substituting Nc =
2
-1 n(n -1)- ND into the formula so that

(56)

T =1
4ND

(57)n(n -1)

From this formula, it can be seen that if there are no discordant pairs, r equals 1, showing positive

1correlation. If all pairs are discordant, 4ND = 4(-2 )n(n -1) = 2n(n -1) and r = 1 - 2 = 1, showing

negative correlation.

Large sample sizes.

For large sample sizes, the formula is

z =3r n(n -1)
(58)

V2(2n +5)

where z is compared to the z score from the standard normal distribution for the appropriate alpha level.

Example.

Kendall's tau was calculated using Sample 1 and Sample 5 in Table 3 (Appendix), n = 15. The

number of discordant pairs for each pair, (xi, .1-5), were 12, 8, 8, 5, 9, 5, 6, 3, 5, 3, 0, 3, 0, 1, and 0. The

total number of discordant pairs, ND is 68. Tau is 1

4.68 =1- 272 = -0.295238. The large sample
15.14 210

3(-.295238)V(15)(14) -12.83522approximation is 1.534102. Because -1.534102 > -1.95596, the
2T55. 8.3666

null hypothesis cannot be rejected.
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Appendix

Table 3. Samples Randomly Selected from Micerri's
Multimodal Lumpy Data Set.

Sample 1 Sample 2 Sample 3 Sample 4 Sample 5
20 11 9 34 10
33 34 14 10 2
4 23 33 38 32

34 37 5 41 4
13 11 8 4 33
6 24 14 26 19

29 5 20 10 11

17 9 18 21 21
39 11 8 13 9
26 33 22 15 31

13 32 11 35 12
9 18 33 43 20

33 27 20 13 33
16 21 7 20 15
36 8 7 13 15
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Table 4. Multimodal Lumpy Set (Micceri, 1989).

38

Score Cumulative
Frequency

cdf Score Cumulative
Frequency cdf

0 5 0.01071 22 269 0.57602
1 13 0.02784 23 279 0.59743
2 21 0.04497 24 . 282 0.60385
3 24 0.05139 25 287 0.61456
4 32 0.06852 26 297 0.63597
5 38 0.08137 27 306 0.65525
6 41 0.08779 28 309 0.66167
7 50 0.10707 29 319 0.68308
8 62 0.13276 30 325 0.69593
9 80 0.17131 31 336 0.71949
10 91 0.19486 32 351 0.75161
11 114 0.24411 33 364 0.77944
12 136 0.29122 34 379 0.81156
13 160 0.34261 35 389 0.83298
14 180 0.38544 36 401 0.85867
15 195 0.41756 37 418 0.89507
16 213 0.45610 38 428 0.91649
17 225 0.48180 39 434 0.92934
18 234 0.50107 40 445 0.95289
19 244 0.52248 41 454 0.97216
20 254 0.54390 42 460 0.98501
21 261 0.55889 43 467 1.00000
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